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Reverse Convertor Design for the 4-Moduli Set
{2n—1,2"n, 2"+ 1,221 _ 1] Based on the Mixed-Radix
Conversion

Negovan Stamenkow and Bojan Jovanovt

Abstract: The residue number system (RNS) is an integer system capidlgport-
ing high speed concurrent arithmetic. One of the most ingmrtonsideration when
designing RNS system is reverse conversion. The reveraeitenfor recently pro-
posed for the four-moduli s§2" —1,2",2" + 1,221 _ 1} is based on new Chinese
remainder theorems Il (New CRT-II) [6]. This paper presamslternative architec-
ture derived by Mixed-Radix conversion for this four-madsgt. Due to the using
simple multiplicative inverses of the proposed moduli #etan considerably reduce
the complexity of the RNS to binary converter based on thesllliRadix conversion.
The hardware architecture for the proposed converter iscbas the adders and sub-
tractors, without the needed ROM or multipliers.

Keywords: Computer arithmetic, residue number system, reverse demveixed-
radix conversion, four-moduli set.

1 Introduction

It is well known that the Residue Number System (RNS) architecturesdatiti-

tal signal processing are typically composed of three major parts: a im&WS
converter for converting the weighted number to residue representagiomsith-
metic unit containing modular adder, subtracter and multiplier, and a RNS tg/binar
converter for transforming the residues into its equivalent weighted\biregre-
sentation [4, 7]. Among these, residue-to-binary converter is the mogples
part of any RNS architecture which should be efficiently implemented to pteve
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the performance degradation of the overall RNS system. The moduli seeds

also an important issue since the complexity and the speed of the resulting con-
version structure depends on the chosen moduli set [9]. So, the dedlef the

RNS system design lie in the choice of the moduli set and in the residue to binary
conversion.

The dynamic range of an RNS system is defined in terms of product of the
moduli, and it denotes the interval of integers, which can be uniquely mexs@

RNS. The larger dynamic range can be realized by using four modublet py
using larger value fon in three power-of-two moduli set [2]. It should be noted
that as the number of moduli in the set increase, the complexity of the RNS will
increase. Thus, the RNS systems based on four moduli set are more xdngpie
those based on three-moduli set.

An important concern for reverse converter design is the selection ayb -
priate conversion algorithm. The algorithms of reverse conversion ardymhaised
on the Chinese remainder theorem (CRT), mixed-radix conversion (MR&}he
new Chinese remainder theorems (New CRTSs) [10]. Among these, News G&sT
simple computations which can be efficiently realized in hardware. For tlasss c
Molahoessini et al. [6] recently proposed reverse converter baséoe new CRT
for the four moduli sef2" — 1,2", 2"+ 1,22"1 _ 1} which has a sufficient dynamic
range ().

In this paper, we propose the residue to binary converter for four fnseit)
proposed in [6], based on the mixed-radix conversion. First, we gexgpsimple
values for multiplicative inverse which leads to simpler hardware. Secoerd, w
reduced hardware by using borrow-save-subtractor insteadrgfsave-adder with
end-around-carry, and by using proposed new modular subtrattichvavoids
double presentation of zero.

The paper is organized as follows: in Section 2, we introduce the negessa
background; the proposed improvements are presented in Sectiornidn3eggro-
vides hardware implementation and simulation, and the last section is Conclusion.

2 Background

A residue number system (RNS) is defined in terms of a relatively-prime moduli
set{my,my, ..., m¢} that is gcdm, m;) = 1 fori # j [1, 8]. The greatest common
divisor (gcd) for a pair of numbers (a,b), can be calculated by the welivk
Euclidian algorithm. A binary numbeft can be represented in the defined residue
number system as a setmémaller integerX = (g, %2, ..., %), where

X =(X)m, 0<x<m 1)
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and (X)m denotes the residue of modulom,. This representation is unique for
any integeiX in the rangg0,M — 1], whereM = mymy - - - m is the dynamic range

of the moduli sef{my,mp,...,m¢}. Modulo (2" — 1) of a negative number is ac-
complished by subtracting this number fr¢@" — 1). This is equivalent to taking

one’s complement of the number.

A large number can thus be represented by several smaller numbeefyther
facilitating big word-length operations to be realized as several small igogth
operations. The addition, subtraction, and multiplication operations can tus b
performed quite efficiently. The division, sign detection, and magnitude agmp
son are time consuming in RNSs.

The Chinese Remainder Theorem (CRT) and mixed-radix conversiolCjMR
are generally used to perform the residue to binary conversion, thatésvert the
residue numbefxy, Xz, ..., %) into the binary numbeX,

The binary numbeX is computed by

k

X — <'Zl<Xi N m M1>M )
1=
whereM; = M/m; andN; = <Mf1>m is the multiplicative inverse dfl modulomy.
The main drawback of this approach is that it requires multiplication byM{®e
and modulavl operations (which M is large number).
The numbelX can be computed by
k—1
X:akrlMi+-~-+a3m1mz+a2m1+a1 3)
=

whereg;s are called the mixed-radix digits (MRD) and they can be obtained from
the residues by [8]

21 :<(' ~((X¢—ay)Crk—az)Cok— -
— 8 1)Ck-1k)

(4)

whereg; j for 1 <i < j < 3 is the multiplicative inverse afy modulom;, or (cij x
m)m, = 1, fork > 1 anda; = x;. For MRDsg;, 0 < g < m;, any positive number

in interval [0,M — 1] is uniquely represented. From (3), it is also seen that the digit
a is the most significant digit. It is shown that the Mixed Radix Conversion is a
strictly sequential process. There is no need for the final modulo reductio

3 MRD to Binary Conversion

Suppose that we have residue numberxz, x3,Xa), 0 < x; < m;, for the moduli set
of length four{my, mp, mg,my} and by substituting Eq. (3) we obtain the following
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expresion:
X =ay +axmy + agMMp + a4 mmpmg (5)

were[1, my, mymy, Mympmg] is mixed-radix vector of mixed-radix system. In (5),
ai, a2, az anday are represented as a sequential algorithm

=X
a2 = ((X2 —a1)C12)m, ©
ag = (((Xs —a1)C13— a2)C23)m,

as = ((((x4 —ar)C14 — @2)C24 — @3)C34)m,

If the mixed-radix digits are given, any number in the interdaM — 1] can be
uniquely represented. The well known mixed-radix conversion algoritrfour
moduli set, according to H. L. Garner [1], is displayed in Figure 1.

Definition 1 Digits in the residue number system have no ordering significance. In
residue addition, subtraction, and multiplication, any particular digit of theule
tant depends solely on the corresponding digits of its operands. HovwResdue
to Mixed-Radix Conversion depends on the digit ordering as shown.ifr(@her,
mixed-radix digits ordering depends on the moduli set ordering. Duasadhson
we define the form of moduli set: the order of modules in the residue mayde
tem. For example, assuming four modfli— 1, 2", 2" + 1, 22"*1 _ 1 we define the
first form of moduli set in ascending order, second f@fm 1, 2", 2211, 2" 1,
and so on. A set of four modules has twentyfour forms. Finally, the twerityfou
form is a set of modules in descending order. Thus, the modulo at disitiqn is
my, at second position is snat third position is g, and at fourth position is m A

The multiplicative inverse for all twenty-four forms of given moduli set are
shown in Table 1.The nineteenth form of given moduli set provides thesbis
tion for ¢jj:
Ciz=-1, C3=-1,
ciz=1  Cu=1 (7)
ca=1  cg=2"1

It can be seen that the twenty-first form of moduli set also provide®d golution.

Using the nineteenth form of given moduli set mixed-radix digits can berepr
sented as

a = X1

ap = ((a1—x2))n

az=((a— (xg—a1)))2ni1 (8)
= ((((xe—a1) —a) —ag)2" )an_1



Table 1. Multiplicative inverse for moduli s¢2" —1,2",2" 41,221 _ 1}

Forma| m 117 3 my | C12 | C13 | C14 | C23 | C24 | C34
1 n_1 on Nyl 2l_gq -1 on=1] _ontl_2 -1 ontl | _ontly o
2 n_1 o 2ntl_gq 241 —1| -—2m1_» on-1 ont+l -1 1
3 on_q on +1 on 22n+1 -1 2nfl -1 _2n+1 _2 1 _2n+1 42 2n+1
4 n_1 Nip1 22ntl_g on on=1| _ontl_o —1| -—2mly2 1 -1
5 on_1 2l_gq 24+1 N | _ontl_p on-1 -1 1 -1 1
6 n_1 2l_9 o Nyl | —2ntl_2 -1 on-1 -1 1 -1
7 on oNn_1 on 41 22n+1 1 1 -1 2ﬂ+1 2n71 72n+1 ) 72ﬂ+1 +2
8 2n on_1 2ntl_gq 241 1 on+l —1|-—2m1_» on-1 1
9 2n 2N4+1 Nn_q1 2ntl_gq -1 1 ontlp_on-1, 9 | _ontlyp| _pntl_o
10 2n Nyl 2l_g N1 -1 ontl 1| —2mlio| —2n-141 1
11 on g2+l g +1 Nn_1 on+1 -1 1 1 1| —2n141
12 on pantl_ g -1 241 on+l 1 -1 1 1 on-1
13 N41 on on_1 2ml_9q 1| —2n-141] 21,2 1 ontl | _ontl_ 9
14 2"+1 on g+l g N-_1 1| —2ntlgpo| o014 ontl 1 1
15 2N4+1 N_1 o pantl_q| _pn-149 1| -—2m1ly2 —1| —2ntl_2 on+l
16 2"+1 on_q1 2ntl_g | _on-lh1 | oMl o 1| -—2ntl_2 -1 -1
17 41 2wl N-1 N | ol o149 1 1 -1 -1
18 Np1 22l pd n_1 | —2ntlyp 1| —2141 -1 1 1
19 | 22n+1 1 N 2"+1 -1 -1 1 1 -1 1] —2n141
20| 221 _1q on 2n_1 241 -1 1 1 1 -1 on-1
21| 2219 241 pd 2n—_1 1 -1 1 1| -2n-1_1 1
22| 220l _1q 241 -1 on 1 1 1| 2141 1 -1
23| 22+l _1q Nn_1 24+1 n 1 1 -1 on-1 -1 1
24 | 220+l _9q Nn_1 N 21 1 -1 1 -1 on-1 -1

€6 {T —1+uZ T+ w2 W2 ‘T — 488 INPON-1 8yl 10j UBISBQ JOLIBAUOD 85198y
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X1 X2 X3 X4
-y ¥ -y Y -y l
Mo Mo Mod
mp m3 my
Subtr. Subti Subtf]
C12 C13 C14
Y YV  vYv Vv
al Mo Mo Mo
m3
Mult Mult. Mult
4 -V VY Y VY
a, I\Flﬁj3 Mo
Subtr, Subt
C23 Co4
VY Vv
Mo Mo
Mult. Mult
v —V v
Mo
as my
Subtr
C34
VY
Mo
my
Mult.

Fig. 1. Mixed-radix algorithm to convert the residue code to a weighted.cod

Operandsy, ay, ag andas are(2n+ 1)-bit, n-bit, (n+ 1)-bit andn-bit, respec-
tively.

4 Hardware Implementation

4.1 MRD to binari convertor

The proposed architecture of RNS to mixed-radix digits conversion is téepic
Figure 2. It contains only modulo subtractors, and one mo@2ile- 1) multipli-
cation by 2-1. Modulo (2" — 1) multiplication by 21 is equivalent tqn— 1) bit
circular shifting. In our implementation circular shiftifg— 1) the left is the same
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as one bit right shifting, because mixed-radix dagjthasn-bits.

X1 X2 X3 X4
2n+1 n n+1 n
Y Y- -Y Y —-Y
Sub. #1 Sub. #p Sub. #3
n n
az1 as1
Y Y- -Y Y
a a
1 2 Sub. #4 Sub. #5
n+1 as2
-y v M
as MSB
Sub. #4
2n—1 n
a43
Y
Mult.
| a,
Y YV Y Y VY
| Conc. | | Conc. | [ Conc. | | Conc. |
as — dp az — a3
Sub. Sub.
Add.
X

Fig. 2. Mixed-radix convertor for four moduli s¢>"1 —1,2" 2"+ 1,2" — 1},

Equation 5 can be simplified as follows
X = _|_a2(22n+l o 1) + a3(22n+1 _ l)zn + a4(22n—1 + l>2n(2n _ 1)

=a; + a222n+1 + a423ﬂ+1 + a424l’1+1 o (a2 + a42n + a422n) + a323n+1 _ a32n
9)
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The hardware realization of (9) can be simplified as follows
X =as—ag+ay —ag (10)
where
as —ay -+ 22" 1a, + 230+, | A0ty

=(ayon,a1.2n-1,.-.,a1,0)

2n+1
+ (az,l"lflu aZ,an, sy a2,07 Oa 0... ) 0)
———

n 2n+1
+ (a4,n717 a4,n72> ceey a4,07 Oa 07 cey 0) (11)
N—_——
n 3n+1
+ (a4,n—1; a4,n—27 R a4,07 07 07 A 0)
N—_——
n an+1

:(a4,l"lfla e 7a4,07 a4,n717 LR} a4705 3-27n717 R a2707 al,Zn, LR al,O)

5n+1
ag =ap + ay2" +as2>"
=(agn-1,8n-2,...,820)
n
+ (a4,n—17 a4.,n—27 ] a4,07 07 O N 70)
n n (12)
+ (a47n—17 a4.,n—27 cecy a4,07 07 O .. 70)
~ N——
n 2n
:(07 07 s 707 a4,n717 s 7a4,07 a4,ﬂ717 (ER) a4,07 az,n—b BREE) aZ,O)
5n+1
a; :a323n+1
— (a3,l’h a37n71, cee 7a3,07 Oa 0... ) 0)
———
n+1 3n+1 (13)
=(0,0,...,0,a3p,...,830,0,0,...,0)
5n+1
ag =az2"
= (a3,n7 azn-1;--- 7a~3,07 07 0... ’ 0)
——
n+1 n (14)

=(0,0,...,0,a3p,...,830,0,0,...,0)
5n+1
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The following example will demonstrate in detail the procedure of bit organiza
tion operandss, ag, ay andag for calculating the results of conversion mixed-radix
digits to binary number.

Example 1 Suppose the number X 2084879is given, which is equal to upper

limit of the dinamic range. The RNS representation fet 4, then x S1H101719)

(510,15,16,14). Itis shown, Mixed-radix digitiai = 1,...,4, have the same digits
as the RNS digits.

a; | 510| 111111110

a | 15 1111
az | 16 10000
as| 14 1110

By using bit organizatioffll), (12), (13)and(14) mixed-radix digits g, ag, a7
and & can be evaluated as

as | 111011101111111111110
as | 000000000111011101111
az | 000100000000000000000
ag | 000000000000100000000

As show in Fig. 2, in order to calculate the binary number X must be two
subtraction and one addition. First binary subtractiog-aag is

as | 111011101111111111110
as | 000000000111011101111

as — 8 ’ 111011101000100001111

Second binary subtractiorya- ag is

a; | 000100000000000000000
ag | 000000000000100000000

a7 —ag ’ 000011111111200000000

Finally, the binary number pf, = (a5 — as) + (a7 — ag) is calculated as

a7 — 000011111111100000000
Final rezult Xpin | 111111101000000001111

as — ap ‘ 111011101000100001111
as

The following hold true 11111110100000000132312084879¢
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4.2 RNS to MRD conversion
Binary numbeix; is 2n+ 1-bit word and can be written in the following form
X1 = n222” + n12“ +Ng (15)

wereng andny aren-bit words, whilen; is one bit binary digit.

4.2.1 First subtractor

The value(x;)n can be obtained by remainder of the divisionxptby 2", which
can be accomplished by truncating the binary nunxpegincex; is binary number
on 2n+ 1 bits, then:

<X1>2n =Ng (16)
The operations moduld'Zare necessarily “carry-ignore” operations.

4.2.2 Second subtractor

Second subtractor # Sub. 2, shown in Figure 2, contain two parts. FRirstsp
convertor(xy)on+1 and second part is modul@” + 1) subtracter, as is shown in
Fig. 3

Since(2"c)n 1 = —c, calculation(x;)n,1 can be performed as a sequence of
subtraction and addition, as described below:

(X1)2n41 = (N2 — N1+ Ng)2ny1 (7)
the above leads to proposed architecture for the resid(} of 1 calculation that

is presented in Figure 3(a).

Example 2 Consider the moduli systeqb1116,17,15} for n = 4 and given
residues X=2006969= (272 9,0,14). Thus, x = 2720 = 100010000 and fi-
nally in binary form p = 000Q n; =000landn=1.
Subtractor gives the following result:
np | 0000
—n; | 0001

st | 11111 s'=111land =1
First adder (Adder #1) gives the following result:

st 1111
Bout 1
1)) 1

¢ [10001 s,=landg=1;s0As1=1
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Since §As; = 1, n-bits1111is added to $which yields:

&£ 10001
n-bits 1111

(27217 | 100000 Carryis 1

Carry on n+ 1 position is omitted and convertor returf872)17 = 0, which is
true. [ |

y

X
n+1 $n+1
No ny
1
1
1
1

l o)
Snt1 S $= (Sr+1:5---,%)

Adder #1 |€— 1
t Subtractor 4
n
Q Sl:(s-]_]d"'?&)) \( \
¥ kJ

Bou

<

Adder#1 | |€&— N2

S
Y &= (55 1,---,%) Y
n+1 Adder #2

N-bits Y 2" n+1

Adder #2

n+1

(X1)2n41 (X=Y)ni1

@) (b)
Fig. 3. (a) Convertofx;)on;1. (b) Modulo (2" + 1) subtractor.

The modulo(2" + 1) subtracter, we used architecture shown in Figure 3(b) [3].
The subtraction modul®" + 1) can be expressed as follows:

2" if x=2"andy=0

18
(X+Y+1+sy)n otherwise (18)

-

The following example illustrates the moduyl®" + 1) subtraction.



100 N. Stamenkové and B. Jovano¥i

Forx <y we havex+y+1< 2" ands,,1 =0, s, = 1. Therefore, using
eq. (18)(x—y)ni1 =x+y+1+1. Forx= 00101 andy = 01111 by applying
Adder #1 we obtain:

x | 00101
y| 10000
1

s | 010110 sy1=0ands;=1;s41A%=0
The final result, by applying adder #2 for adding ladbit of previous sum
0110 withs, = 1, is 0111. The multiplexer forward this input to the output. This
hold true becausé-10)17 = 7.

4.2.3 Third subtractor

The third subtractor # Sub. 3, shown in Figure 2, contains two parts. idi@déirt
is convertor(x; )on_1 and the second part is modyl®' — 1) subtracter, as is shown
in Fig. 4

Since (2Mxn_1 = 1, calculation(x;)n_1 can be performed as a sequence of
additions and subtractions, as described below:

(X1)2n1 = (N2 4Ny +Ng)n_ (19)

the above leads to proposed architecture for the residig pfi_; calculation that
is presented in Figure 4(a).

Example 3 Consider x = 390, =110000119. Adder #1 shown on the Fig. 4(a)
perform following result:

np | 1000
ny | 0110
1)) 1

st | 1111 con =0

Adder #2 perform following result

st 1111
Cout1 0
1

& | 10000 Coup=1

The Subtractor gives the final fresult.
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S 0000
—Cout2 0
(390)15 | 0000
Thus, resul{390)15 = 0, which is true. [ |
N m

.

Court Adder#1 |€—— Mo
Sl: (Sn—lw"aa))
2R
Cour2 Adder#2 |€— 1
2 .
= (S-1,---,%) ¢ ¢
Bout

n Subtractor #1
-V v |

Subtractor Y I —

Subtractor #2
i n
(Xp)n 1 (X=Y)ar_1

@) (b)
Fig. 4. (a) Convertofx;)on_1. (b) Modulo 2' — 1 subtractor.

The modulo(2" — 1) subtraction can be expressed as follows:

(X=Y)an_1= (X—Yy — bour)zn (20)
This type of subtractor is shown on the Fig. 4(b), and it is known as theo®er

Save Subtractor with End-Around-borrow (BSS with EAB).

4.3 Fourth and fifth subtractor

Subtractor #4, is modul@" + 1) subtractor, is shown on the Fig. 3(b), but sub-
tractor #5 is modul@2" — 1) subtractor (BSS with EAB Fig. 4(b)).
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4.3.1 Sixth subtractor

The sixth subtractor # Sub. 6, shown in Figure 2 is very simple as it is shown
in Fig. 5. Minuend isn-bit binary number, but subtrahend (i8+ 1)-bit binary
number. MSB bit of subtrahend is put on the borrow input of subtractorihe
second subtractor subtracts borrow back!tdThat is(x —y)on_1 = s — boy; end-
around-borrow.

n+1

n

—-Y Y

bout

Subtractor #1 bin
| 31:(3'\—1)"'750)

v V-

Subtractor #2

(X=y)an_1
Fig. 5. Oduzimé po modulu 2 —1

5 Conclusion

This paper presents a mixed-radix reverse converter for the recembosed
residue number system moduli §&f —1,2", 2"+ 1,221 11, The implementa-
tion consists of two levels. The first level is the algorithm to convert RNS mumb
to mixed-radix digits. The algorithm is improved by using optimal choice of form
of moduli set. The second level is a hardware architecture. Carrg-Sduer
with End-Around-Carry is replaced with Borrow-Save-Subtractor #vaids two
complement operations, and End-Around-Carry adder. Furtherjribeylsubtrac-
tion is optimized by using Borrow-Propagate-Subtractor with End-ArdBodeow
which avoids one complement operation and multiplexer. The proposeérntenv
architecture is memoryless and it can be efficiently implemented.
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